
Android Phone as a Dedicated Server

Complete Setup Guide: Termux + Shizuku

Based on a Samsung Galaxy S22 Ultra setup, but applicable to most modern Android phones

Table of Contents

- Prerequisites
- Termux Setup
- Shizuku Setup
- rish Integration
- Database Stack
- GPU Compute
- Python/Node Stack
- Bloatware Management
- Clawdbot Integration
- Troubleshooting

1. Prerequisites

What You Need

Item | Notes

Android phone | Android 11+ recommended. Flagship = more RAM/cores

USB cable | For initial ADB setup

Computer | Temporary - for wireless ADB pairing

WiFi | Stable connection for server use

Power source | Keep phone plugged in 24/7

Why This Setup?

The Problem: Termux runs as an "untrusted app" on Android, which means:

- Limited to ~3 CPU cores (Android throttles background apps)
- No GPU access (SELinux blocks /dev/dri/*)
- Can't access many system features
The Solution: Shizuku gives you shell user privileges, unlocking:

- All CPU cores (8 on our S22 Ultra)
- GPU compute access (Vulkan, OpenCL)
- System management commands (pm, dumpsys, etc.)

Our Reference Hardware

Device: Samsung Galaxy S22 Ultra (S908B)

CPU: Snapdragon 8 Gen 1 (8 cores)

RAM: 8GB (3.8GB available after optimization)

GPU: Samsung Xclipse 920 (Vulkan 1.1.179)

Storage: 106GB (85GB free)

Status: Cracked screen, repurposed as 24/7 server

2. Termux Setup

Installation

IMPORTANT: Install from F-Droid, NOT Google Play Store!

The Play Store version is outdated and broken.

- Install F-Droid: https://f-droid.org/
- Install Termux from F-Droid: https://f-droid.org/packages/com.termux/
- Install Termux:API (optional but useful): https://f-droid.org/packages/com.termux.api/

First Launch

Open Termux and run:

Update package lists

pkg update

Upgrade existing packages

pkg upgrade -y

Install essential tools

pkg install -y git curl wget nano openssh jq

Understanding pkg

pkg is Termux's package manager (wrapper around apt):

Search for packages

pkg search <name>

Install packages

pkg install <package>

Remove packages

pkg uninstall <package>

List installed packages

pkg list-installed

Show package info

pkg show <package>

Storage Setup

Grant Termux access to shared storage:

termux-setup-storage

This creates symlinks in ~/storage/:

- ~/storage/shared Internal storage
- ~/storage/downloads Downloads folder
- ~/storage/dcim Camera photos

Keeping Termux Alive

Android aggressively kills background apps. Prevent this:

- Disable battery optimization for Termux:
- Settings Apps Termux Battery Unrestricted

- Acquire a wake lock (in Termux):
`bash

termux-wake-lock

`

- Consider running a foreground service:
`bash

Install termux-services

pkg install termux-services

Enable sshd to keep Termux active

sv-enable sshd

`

SSH Access (Recommended)

Set up SSH so you can manage remotely:

Install OpenSSH

pkg install openssh

Set a password

passwd

Start SSH server

sshd

Find your IP

ip addr show wlan0 | grep inet

SSH runs on port 8022 by default:

From another machine

ssh -p 8022 user@<phone-ip>

3. Shizuku Setup

What is Shizuku?

Shizuku is a clever app that:

- Runs an ADB shell process on your phone
- Lets other apps borrow those shell privileges
- Works WITHOUT root
This gives us access to the shell user (uid 2000), which has far more privileges than regular apps.

Installation

- Install Shizuku from Play Store or F-Droid:
- https://shizuku.rikka.app/
- Or: https://play.google.com/store/apps/details?id=moe.shizuku.privileged.api

- Open Shizuku app

Starting Shizuku (Wireless ADB Method)

This is the recommended method - survives reboots better than USB.

Step 1: Enable Developer Options

- Settings About Phone Software Information
- Tap "Build Number" 7 times
- Enter PIN if prompted
- "Developer mode enabled" appears

Step 2: Enable Wireless Debugging

- Settings Developer Options
- Find "Wireless debugging" and enable it
- Tap on "Wireless debugging" to enter its settings

Step 3: Pair with Shizuku

Option A: From the phone itself (easiest)

- In Wireless Debugging settings, tap "Pair device with pairing code"
- Note the pairing code and port (e.g., 123456 on port 37521)
- Open Shizuku app
- Tap "Start via Wireless debugging"
- Enter the pairing code when prompted
- Shizuku will connect and start
Option B: From a computer (if Option A fails)

On your computer, with ADB installed

adb pair <phone-ip>:<pairing-port>

Enter pairing code when prompted

Then connect

adb connect <phone-ip>:<debug-port>

Start Shizuku

adb shell sh /storage/emulated/0/Android/data/moe.shizuku.privileged.api/start.sh

Step 4: Verify Shizuku is Running

In the Shizuku app, you should see:

- "Shizuku is running"
- Service version number
- Number of authorized apps

Auto-Start on Boot

Shizuku can auto-start if:

- Wireless debugging stays enabled
- You're on the same WiFi network
In Shizuku settings:

- Enable "Start automatically when wireless debugging is enabled"

Granting Termux Access

- Open Shizuku
- Look for Termux in the list of apps
- Tap to authorize
- If Termux doesn't appear, you need to install rish first (next section)

4. rish Integration

What is rish?

rish (Remote Interactive SHell) is a tool that lets you run commands with Shizuku's shell privileges from within
Termux.

Installing rish

Navigate to Termux bin

cd $PREFIX/bin

Download rish and the DEX file

Method 1: From Shizuku releases

curl -L -o rish "https://github.com/ArcPart/rish/releases/download/v1.0.0/rish-termux"

curl -L -o rish_shizuku.dex "https://github.com/ArcPart/rish/releases/download/v1.0.0/rish_shizuku.dex"

Make executable

chmod +x rish

Alternative: Manual extraction from Shizuku APK

If the above doesn't work, extract from Shizuku APK

pkg install unzip

Find Shizuku APK (path varies)

APK_PATH=$(pm path moe.shizuku.privileged.api 2>/dev/null | cut -d: -f2)

If that doesn't work, try:

APK_PATH="/data/app/~~*/moe.shizuku.privileged.api*/base.apk"

Extract the DEX

unzip -p $APK_PATH classes.dex > $PREFIX/bin/rish_shizuku.dex

The rish binary needs to be obtained separately or written

Testing rish

Test basic command

echo 'id' | rish

Expected output:

uid=2000(shell) gid=2000(shell) groups=...

If you see uid=2000(shell), it's working!

The rish-run Helper Script

Create a helper script that makes running binaries through Shizuku easy:

cat > $PREFIX/bin/rish-run << 'EOF'

#!/data/data/com.termux/files/usr/bin/bash

#

rish-run: Run commands/binaries with full hardware access via Shizuku

#

Usage:

rish-run ./binary # Run a binary

rish-run -c "command" # Run a shell command

#

set -e

SHARED_DIR="/data/local/tmp"

if ["$1" = "-c"]; then

 # Run a command directly

 shift

 echo "$*" | rish

 exit $?

fi

if [-z "$1"]; then

 echo "Usage: rish-run ./binary [args]"

 echo " rish-run -c \"command\""

 exit 1

fi

BINARY="$1"

shift

if [! -f "$BINARY"]; then

 echo "Error: File not found: $BINARY"

 exit 1

fi

Get absolute path and filename

BINARY_PATH=$(realpath "$BINARY")

BINARY_NAME=$(basename "$BINARY")

DEST="$SHARED_DIR/$BINARY_NAME"

Copy to shared location and execute

echo "cp \"$BINARY_PATH\" \"$DEST\" && chmod 755 \"$DEST\" && \"$DEST\" $*" | rish

Cleanup

echo "rm -f \"$DEST\"" | rish 2>/dev/null || true

EOF

chmod +x $PREFIX/bin/rish-run

Usage Examples

Check all CPU cores are visible

rish-run -c "cat /proc/cpuinfo | grep processor | wc -l"

Output: 8 (instead of 3)

Check GPU access

rish-run -c "ls -la /dev/dri/"

Should show renderD128, renderD129, etc.

Run a compiled binary with full hardware

rish-run ./my_benchmark

Compile in Termux, run via Shizuku

gcc -O3 -o test test.c

rish-run ./test

What Shizuku Unlocks (Before/After)

Resource | Normal Termux | Via Shizuku

CPU Cores | 3 | 8

GPU Access | Blocked | Full

CPU Frequencies | Hidden | Visible

System Info | Limited | Full dumpsys

Package Management | Limited | Full pm commands

5. Database Stack

SQLite (Built-in, Simple)

SQLite is perfect for local data storage.

Install

pkg install sqlite

Create/open database

sqlite3 mydata.db

Basic commands

sqlite> CREATE TABLE trades (id INTEGER PRIMARY KEY, symbol TEXT, price REAL, timestamp INTEGER);

sqlite> INSERT INTO trades VALUES (1, 'BTC', 50000.0, 1640000000);

sqlite> SELECT * FROM trades;

sqlite> .quit

Limitations: Single-writer, no network access, file-based.

Redis (In-Memory, Fast)

Redis is excellent for caching, real-time data, and pub/sub.

Install

pkg install redis

Start Redis server

redis-server --daemonize yes

Test connection

redis-cli ping

Output: PONG

Basic usage

redis-cli SET mykey "hello"

redis-cli GET mykey

Redis Configuration (optional):

Create config file

mkdir -p ~/.config/redis

cat > ~/.config/redis/redis.conf << 'EOF'

daemonize yes

port 6379

bind 127.0.0.1

maxmemory 512mb

maxmemory-policy allkeys-lru

appendonly yes

appendfilename "appendonly.aof"

dir /data/data/com.termux/files/home/.local/share/redis

EOF

Create data directory

mkdir -p ~/.local/share/redis

Start with config

redis-server ~/.config/redis/redis.conf

PostgreSQL (via proot-distro)

PostgreSQL doesn't run natively in Termux, but works perfectly in a Linux container.

Installing proot-distro

Install proot-distro

pkg install proot-distro

List available distros

proot-distro list

Install Alpine Linux (lightweight, ~10MB)

proot-distro install alpine

Setting Up PostgreSQL in Alpine

Enter Alpine

proot-distro login alpine

Inside Alpine: Install PostgreSQL

apk update

apk add postgresql postgresql-contrib

Initialize database

mkdir -p /var/lib/postgresql/data

mkdir -p /run/postgresql

chown -R postgres:postgres /var/lib/postgresql /run/postgresql

Initialize as postgres user

su postgres -c "initdb -D /var/lib/postgresql/data"

Start PostgreSQL

su postgres -c "pg_ctl -D /var/lib/postgresql/data start"

Create a database

su postgres -c "createdb trading"

Connect

su postgres -c "psql -d trading"

Exit Alpine

exit

Connecting from Termux

Run command in Alpine

proot-distro login alpine -- su postgres -c "psql -d trading -c 'SELECT version();'"

Helper Script for PostgreSQL

cat > $PREFIX/bin/pg << 'EOF'

#!/bin/bash

PostgreSQL helper for proot-distro Alpine

ACTION="${1:-shell}"

case "$ACTION" in

 start)

 proot-distro login alpine -- sh -c "

 mkdir -p /run/postgresql

 chown postgres:postgres /run/postgresql

 su postgres -c 'pg_ctl -D /var/lib/postgresql/data start'

 "

 ;;

 stop)

 proot-distro login alpine -- su postgres -c "pg_ctl -D /var/lib/postgresql/data stop"

 ;;

 status)

 proot-distro login alpine -- su postgres -c "pg_ctl -D /var/lib/postgresql/data status"

 ;;

 shell)

 proot-distro login alpine -- su postgres -c "psql -d trading"

 ;;

 exec)

 shift

 proot-distro login alpine -- su postgres -c "psql -d trading -c \"$*\""

 ;;

 *)

 echo "Usage: pg [start|stop|status|shell|exec <SQL>]"

 ;;

esac

EOF

chmod +x $PREFIX/bin/pg

Usage:

pg start # Start PostgreSQL

pg stop # Stop PostgreSQL

pg shell # Interactive psql

pg exec "SELECT * FROM trades LIMIT 5"

TimescaleDB (Time-Series Extension)

TimescaleDB is perfect for trading data, metrics, and time-series workloads.

Enter Alpine

proot-distro login alpine

Add TimescaleDB repository

echo "https://dl-cdn.alpinelinux.org/alpine/edge/community" >> /etc/apk/repositories

apk update

Install TimescaleDB

apk add timescaledb

Enable the extension

su postgres -c "psql -d trading -c 'CREATE EXTENSION IF NOT EXISTS timescaledb;'"

Create a hypertable for trades

su postgres -c "psql -d trading" << 'EOF'

CREATE TABLE IF NOT EXISTS trades (

 time TIMESTAMPTZ NOT NULL,

 symbol TEXT NOT NULL,

 price DOUBLE PRECISION,

 volume DOUBLE PRECISION,

 side TEXT

);

SELECT create_hypertable('trades', 'time', if_not_exists => TRUE);

-- Create indexes

CREATE INDEX IF NOT EXISTS idx_trades_symbol_time ON trades (symbol, time DESC);

-- Enable compression (optional, saves space)

ALTER TABLE trades SET (

 timescaledb.compress,

 timescaledb.compress_segmentby = 'symbol'

);

EOF

exit

Example Queries:

-- Insert trade

INSERT INTO trades VALUES (NOW(), 'BTC/USD', 50000.0, 1.5, 'buy');

-- Get OHLCV candles

SELECT

 time_bucket('1 minute', time) AS bucket,

 symbol,

 first(price, time) AS open,

 max(price) AS high,

 min(price) AS low,

 last(price, time) AS close,

 sum(volume) AS volume

FROM trades

WHERE symbol = 'BTC/USD'

 AND time > NOW() - INTERVAL '1 hour'

GROUP BY bucket, symbol

ORDER BY bucket;

6. GPU Compute

Understanding Android GPU Access

On Android:

- GPU hardware exists at /dev/dri/renderD128, /dev/dri/renderD129
- Regular apps (including Termux) are blocked by SELinux
- The shell user (via Shizuku) CAN access GPU

Checking GPU Access

Without Shizuku (will fail)

ls -la /dev/dri/

Permission denied

With Shizuku (works!)

rish-run -c "ls -la /dev/dri/"

crw-rw---- 1 system graphics ... renderD128

crw-rw---- 1 system graphics ... renderD129

Vulkan Compute (Recommended)

Vulkan is the fastest option for GPU compute on Android.

Install Vulkan tools in Termux

pkg install vulkan-tools vulkan-headers shaderc

Check Vulkan info (via Shizuku)

rish-run -c "vulkaninfo --summary 2>/dev/null | head -30"

Sample Vulkan Compute Program:

// save as: gpu_compute.c

// Minimal Vulkan compute example

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <dlfcn.h>

// Vulkan types (minimal)

typedef uint32_t VkFlags;

typedef uint32_t VkBool32;

typedef uint64_t VkDeviceSize;

typedef struct VkInstance_T* VkInstance;

typedef struct VkPhysicalDevice_T* VkPhysicalDevice;

typedef struct VkDevice_T* VkDevice;

// ... (full implementation would be longer)

int main() {

 printf("Vulkan GPU Compute Test\n");

 // Load Vulkan library

 void* vulkan = dlopen("libvulkan.so", RTLD_NOW);

 if (!vulkan) {

 printf("Failed to load Vulkan: %s\n", dlerror());

 return 1;

 }

 printf("Vulkan library loaded successfully!\n");

 // In a real implementation, you would:

 // 1. Create VkInstance

 // 2. Select VkPhysicalDevice

 // 3. Create VkDevice with compute queue

 // 4. Create shader module from SPIR-V

 // 5. Create compute pipeline

 // 6. Allocate buffers

 // 7. Record and submit command buffer

 // 8. Read results

 dlclose(vulkan);

 return 0;

}

Compile

clang -O3 -o gpu_compute gpu_compute.c -ldl

Run via Shizuku (for GPU access)

rish-run ./gpu_compute

OpenCL (Native Samsung/AMD)

Samsung phones with AMD GPUs (like S22 Ultra) have native OpenCL:

Check for OpenCL library

rish-run -c "ls -la /vendor/lib64/*OpenCL* 2>/dev/null"

/vendor/lib64/libSGPUOpenCL.so

The GPU reports as AMD gfx1040 (RDNA2 architecture)

OpenCL Kernel Example:

// opencl_kernel.cl

__kernel void vector_add(__global const float* a,

 __global const float* b,

 __global float* result) {

 int i = get_global_id(0);

 result[i] = a[i] + b[i];

}

ML Inference (NNAPI)

Android's Neural Networks API can use GPU/NPU:

Using ONNX Runtime with NNAPI

import onnxruntime as ort

Create session with NNAPI provider (uses GPU/NPU)

session = ort.InferenceSession(

 "model.onnx",

 providers=['NnapiExecutionProvider', 'CPUExecutionProvider']

)

Run inference

result = session.run(None, {"input": input_data})

GPU Benchmark Results (S22 Ultra)

Test | Result

Vulkan compute (1M float adds) | 1.33 ms

OpenCL compute (1M float adds) | 3.95 ms

Memory bandwidth | 5.2 GB/s

7. Python/Node Stack

Python Setup

Install Python

pkg install python python-pip

Upgrade pip

pip install --upgrade pip

Install common packages

pip install numpy requests aiohttp

For data science (may take a while)

pip install pandas scipy matplotlib

NumPy Verification:

python3 -c "

import numpy as np

print(f'NumPy version: {np.__version__}')

Quick benchmark

import time

a = np.random.rand(1000000)

b = np.random.rand(1000000)

start = time.time()

c = a + b

print(f'1M float adds: {(time.time()-start)*1000:.2f}ms')

"

Async PostgreSQL with Python

Install asyncpg (works in Alpine via proot)

proot-distro login alpine -- sh -c "

 apk add python3 py3-pip

 pip install asyncpg

"

async_db.py - Run inside Alpine

import asyncio

import asyncpg

async def main():

 conn = await asyncpg.connect(

 user='postgres',

 database='trading',

 host='/run/postgresql' # Unix socket

)

 result = await conn.fetch('SELECT * FROM trades LIMIT 5')

 for row in result:

 print(row)

 await conn.close()

asyncio.run(main())

Node.js Setup

Install Node.js

pkg install nodejs-lts

Or latest version

pkg install nodejs

Verify

node --version

npm --version

Initialize a project

mkdir ~/myproject && cd ~/myproject

npm init -y

Install packages

npm install express redis pg

Example Express Server:

// server.js

const express = require('express');

const app = express();

app.get('/', (req, res) => {

 res.json({

 status: 'running',

 platform: 'Android/Termux',

 timestamp: new Date().toISOString()

 });

});

app.listen(3000, '0.0.0.0', () => {

 console.log('Server running on http://0.0.0.0:3000');

});

Run

node server.js

Test from another device

curl http://<phone-ip>:3000/

Development Workflow

Install development tools

pkg install git vim tmux

tmux for persistent sessions

tmux new -s dev

Split panes for:

- Code editing

- Running server

- Logs/testing

Detach: Ctrl+B, D

Reattach: tmux attach -t dev

8. Bloatware Management

Why Disable Bloatware?

Preinstalled apps consume RAM even when "not running":

- Background services
- Receivers listening for broadcasts
- Cached processes
On our S22 Ultra, disabling ~100 packages freed significant RAM now at 3.4GB available (from 7.1GB total).

Listing Installed Packages

List all packages

rish-run -c "pm list packages" | wc -l

List third-party packages

rish-run -c "pm list packages -3"

List system packages

rish-run -c "pm list packages -s"

List disabled packages

rish-run -c "pm list packages -d"

Safe Packages to Disable

WARNING: Disabling wrong packages can soft-brick your phone!

Generally Safe to Disable:

Facebook

echo 'pm disable-user --user 0 com.facebook.katana' | rish

echo 'pm disable-user --user 0 com.facebook.appmanager' | rish

echo 'pm disable-user --user 0 com.facebook.services' | rish

Microsoft

echo 'pm disable-user --user 0 com.microsoft.skydrive' | rish

echo 'pm disable-user --user 0 com.microsoft.office.outlook' | rish

Google (be careful!)

echo 'pm disable-user --user 0 com.google.android.apps.magazines' | rish

echo 'pm disable-user --user 0 com.google.android.apps.tachyon' | rish # Duo

echo 'pm disable-user --user 0 com.google.android.videos' | rish

echo 'pm disable-user --user 0 com.google.android.music' | rish

Samsung

echo 'pm disable-user --user 0 com.samsung.android.game.gamehome' | rish

echo 'pm disable-user --user 0 com.samsung.android.game.gametools' | rish

echo 'pm disable-user --user 0 com.samsung.android.app.tips' | rish

echo 'pm disable-user --user 0 com.samsung.android.voc' | rish # Samsung Members

echo 'pm disable-user --user 0 com.samsung.android.mobileservice' | rish

Disable Script

cat > $PREFIX/bin/disable-bloat << 'EOF'

#!/bin/bash

Disable common bloatware packages

PACKAGES=(

 # === GOOGLE (aggressive - keep GMS if you need Play Store) ===

 "com.google.android.gms" # Play Services - big RAM hog

 "com.google.android.gms.location.history"

 "com.google.android.gms.supervision"

 "com.google.android.vending" # Play Store

 "com.google.android.apps.maps"

 "com.google.android.apps.messaging"

 "com.google.android.apps.tachyon" # Duo/Meet

 "com.google.android.apps.turbo" # Device Health

 "com.google.android.gm" # Gmail

 "com.google.android.youtube"

 "com.google.android.googlequicksearchbox" # Google Search/Assistant

 "com.google.android.inputmethod.latin" # Gboard

 "com.google.android.tts"

 "com.google.android.as"

 "com.google.android.as.oss"

 "com.google.android.ims"

 "com.google.android.feedback"

 "com.google.android.documentsui"

 "com.google.android.ext.services"

 "com.google.android.printservice.recommendation"

 "com.google.android.projection.gearhead" # Android Auto

 "com.google.android.syncadapters.calendar"

 "com.google.ar.core"

 "com.google.audio.hearing.visualization.accessibility.scribe"

 "com.google.android.apps.accessibility.voiceaccess"

 "com.google.android.adservices.api"

 "com.google.android.federatedcompute"

 "com.google.android.ondevicepersonalization.services"

 "com.google.mainline.adservices"

 "com.google.mainline.telemetry"

 # === FACEBOOK ===

 "com.facebook.appmanager"

 "com.facebook.services"

 # === MICROSOFT ===

 "com.microsoft.skydrive"

 "com.microsoft.appmanager"

 # === SAMSUNG BLOAT ===

 "com.samsung.android.mobileservice"

 "com.samsung.android.bixby.agent"

 "com.samsung.android.app.settings.bixby"

 "com.samsung.android.visionintelligence"

 "com.samsung.android.arzone"

 "com.samsung.android.app.spage" # Samsung Free

 "com.samsung.android.app.notes"

 "com.samsung.android.app.contacts"

 "com.samsung.android.app.routines"

 "com.samsung.android.app.sharelive"

 "com.samsung.android.app.galaxyfinder"

 "com.samsung.android.app.telephonyui"

 "com.samsung.android.app.aodservice"

 "com.samsung.android.game.gos" # Game Optimizer

 "com.samsung.android.messaging"

 "com.samsung.android.honeyboard" # Samsung Keyboard

 "com.samsung.android.themestore"

 "com.samsung.android.stickercenter"

 "com.samsung.android.forest" # Digital Wellbeing

 "com.samsung.android.lool" # Samsung Members

 "com.samsung.android.scloud" # Samsung Cloud

 "com.samsung.android.samsungpass"

 "com.samsung.android.smartcallprovider"

 "com.samsung.android.smartface"

 "com.samsung.android.smartsuggestions"

 "com.samsung.android.rubin.app"

 "com.samsung.android.mdx"

 "com.samsung.android.mcfds"

 "com.samsung.android.da.daagent"

 "com.samsung.android.dsms"

 "com.samsung.android.bbc.bbcagent"

 "com.samsung.android.beaconmanager"

 "com.samsung.android.cmfa.framework"

 "com.samsung.android.carkey"

 "com.samsung.android.dkey"

 "com.samsung.android.uwb"

 "com.samsung.android.cameraxservice"

 "com.samsung.android.peripheral.framework"

 "com.samsung.android.scpm"

 "com.samsung.android.scs"

 "com.samsung.android.server.wifi.mobilewips"

 "com.samsung.android.service.aircommand"

 "com.samsung.android.service.airviewdictionary"

 "com.samsung.android.service.pentastic"

 "com.samsung.android.shortcutbackupservice"

 "com.samsung.SMT"

 "com.samsung.accessibility"

 "com.samsung.android.accessibility.talkback"

 "com.samsung.faceservice"

 "com.samsung.ipservice"

 "com.samsung.oda.service"

 "com.samsung.sec.android.teegris.tui_service"

 "com.samsung.cmfa.AuthTouch"

 # === SYSTEM (careful!) ===

 "com.android.bluetooth" # Only if not using BT

 "com.android.chrome"

 "com.android.nfc" # Only if not using NFC

 "com.android.phone" # Only if pure server (no calls!)

 "com.android.settings.intelligence"

 "com.osp.app.signin" # Samsung Account

 "com.sec.android.app.launcher" # Samsung Home (use AOSP)

 "com.sec.android.app.chromecustomizations"

 "com.sec.android.daemonapp"

 "com.sec.android.desktopmode.uiservice" # DeX

 "com.sec.android.diagmonagent"

 "com.sec.android.sdhms"

 "com.sec.bcservice"

 "com.sec.imsservice"

 "com.sec.location.nsflp2"

 "com.sec.phone"

 "com.sec.sve"

 "com.sec.unifiedwfc"

 "com.wssyncmldm"

)

for pkg in "${PACKAGES[@]}"; do

 echo "Disabling: $pkg"

 echo "pm disable-user --user 0 $pkg" | rish 2>/dev/null

done

echo "Done! Disabled ${#PACKAGES[@]} packages"

echo "Reboot recommended"

EOF

chmod +x $PREFIX/bin/disable-bloat

Re-enabling Packages

If something breaks:

Re-enable a specific package

echo 'pm enable com.package.name' | rish

Re-enable ALL disabled packages

for pkg in $(pm list packages -d | cut -d: -f2); do

 echo "pm enable $pkg" | rish

done

Checking Memory After Cleanup

Before/after comparison

cat /proc/meminfo | grep -E "MemTotal|MemAvailable"

Or via Termux API

termux-battery-status

9. Clawdbot Integration (Optional)

What is Clawdbot?

Clawdbot is an AI agent platform that runs Claude (Anthropic's AI) locally with:

- Tool use (file system, web, shell commands)
- Memory and context management
- Discord/messaging integration

Prerequisites

- Node.js 18+
- npm
- Anthropic API key

Installation

Install Clawdbot globally

npm install -g clawdbot

Set up API key

export ANTHROPIC_API_KEY="your-key-here"

Add to shell profile

echo 'export ANTHROPIC_API_KEY="your-key-here"' >> ~/.bashrc

Termux-Specific Patches

Clawdbot may have hardcoded paths that don't work in Termux:

Check for hardcoded paths

grep -rn "'/tmp\|'/home\|\"/tmp\|\"/home" $PREFIX/lib/node_modules/clawdbot/dist/

Patch /tmp Termux temp

Patch /home /data/data/com.termux/files/home

Running Clawdbot

Start interactively

clawdbot

Or with specific config

clawdbot --config ~/.config/clawdbot/config.yaml

Sharp (Image Processing)

Clawdbot uses sharp for images. The native build may fail:

If native build OOMs, use WASM fallback

cd $PREFIX/lib/node_modules/clawdbot

npm install sharp --build-from-source=false

Discord Integration

Set up Discord bot token

export DISCORD_BOT_TOKEN="your-token"

Configure channels in Clawdbot config

10. Troubleshooting

Shizuku Won't Start

Problem: Shizuku shows "not running"

Solutions:

- Check wireless debugging is enabled
- Re-pair the device:
`bash

On computer

adb pair <ip>:<port>

adb connect <ip>:<port>

adb shell sh /storage/emulated/0/Android/data/moe.shizuku.privileged.api/start.sh

`

- Check if another ADB session is blocking:
`bash

adb devices # Should show your device

`

rish: Permission Denied

Problem: rish commands fail with permission errors

Solutions:

- Ensure Shizuku is running (check Shizuku app)
- Authorize Termux in Shizuku
- Check the DEX file exists:
`bash

ls -la $PREFIX/bin/rish_shizuku.dex

`

PostgreSQL Won't Start

Problem: pg_ctl fails in Alpine

Solutions:

Check if already running

proot-distro login alpine -- su postgres -c "pg_ctl status -D /var/lib/postgresql/data"

Check data directory permissions

proot-distro login alpine -- ls -la /var/lib/postgresql/

Reinitialize if corrupted

proot-distro login alpine -- sh -c "

 rm -rf /var/lib/postgresql/data/*

 su postgres -c 'initdb -D /var/lib/postgresql/data'

"

Termux Keeps Getting Killed

Problem: Android kills Termux after a few minutes

Solutions:

- Disable battery optimization
- Acquire wake lock: termux-wake-lock
- Run a foreground notification service
- Disable "Adaptive battery"
- On Samsung: Disable "Put unused apps to sleep" in Device Care

Out of Memory (OOM) During Compilation

Problem: Compiling large packages fails with OOM

Solutions:

- Disable more bloatware to free RAM
- Add swap (if rooted)
- Compile on another machine and copy binary
- Use pre-built packages when available

GPU Access Still Blocked

Problem: Even with Shizuku, GPU commands fail

Solutions:

- Verify shell SELinux context:
`bash

rish-run -c "cat /proc/self/attr/current"

Should show: u:r:shell:s0

`

- Check device permissions:
`bash

rish-run -c "ls -la /dev/dri/"

`

- Some devices may need additional vendor-specific workarounds

Networking Issues

Problem: Can't connect to services from other devices

Solutions:

- Check phone IP: ip addr show wlan0
- Verify service is binding to 0.0.0.0 (not just localhost)
- Check Android firewall settings

- Some routers block device-to-device traffic

Quick Reference Card

Shizuku commands

echo 'id' | rish # Test Shizuku

rish-run ./binary # Run binary with full hardware

rish-run -c "command" # Run command via Shizuku

Database

redis-server --daemonize yes # Start Redis

pg start # Start PostgreSQL (helper)

pg shell # PostgreSQL shell

System info

rish-run -c "cat /proc/cpuinfo | grep processor | wc -l" # CPU cores

rish-run -c "cat /proc/meminfo | grep MemAvailable" # Free RAM

rish-run -c "ls /dev/dri/" # GPU devices

Bloatware

rish-run -c "pm list packages -d" # List disabled

echo 'pm disable-user --user 0 com.package' | rish # Disable

echo 'pm enable com.package' | rish # Re-enable

Termux

termux-wake-lock # Prevent sleep

termux-setup-storage # Enable storage access

sshd # Start SSH server (port 8022)

Appendix: Our S22 Ultra Performance

Metric | Value

CPU cores (via Shizuku) | 8

Available RAM (after optimization) | 3.8 GB

Vulkan compute (1M adds) | 1.33 ms

OpenCL compute (1M adds) | 3.95 ms

AES-256-CBC | 491 MB/s

Disk write (synced) | 123 MB/s

Disk read | 2.3 GB/s

API latency (Anthropic) | ~117ms connect, ~477ms total

Guide last updated: January 2026

Based on real-world experience with Samsung Galaxy S22 Ultra running Android 12

