Android Phone as a Dedicated Server

Complete Setup Guide: Termux + Shizuku

Based on a Samsung Galaxy S22 Ultra setup, but applicable to most modern Android phones

Table of Contents

- Prerequisites

- Termux Setup

- Shizuku Setup

- rish Integration

- Database Stack

- GPU Compute

- Python/Node Stack

- Bloatware Management
- Clawdbot Integration

- Troubleshooting

1. Prerequisites

What You Need

Item | Notes

Android phone | Android 11+ recommended. Flagship = more RAM/cores
USB cable | For initial ADB setup

Computer | Temporary - for wireless ADB pairing

WiFi | Stable connection for server use

Power source | Keep phone plugged in 24/7

Why This Setup?

The Problem: Termux runs as an "untrusted app" on Android, which means:

- Limited to ~3 CPU cores (Android throttles background apps)

- No GPU access (SELinux blocks /dev/dri/*)

- Can't access many system features

The Solution: Shizuku gives you shell user privileges, unlocking:
- All CPU cores (8 on our S22 Ultra)

- GPU compute access (Vulkan, OpenCL)
- System management commands (pm, dumpsys, etc.)

Our Reference Hardware

Devi ce: Samsung Gal axy S22 U tra (S908B)

CPU. Snapdragon 8 Gen 1 (8 cores)

RAM 8GB (3.8GB available after optim zation)
GPU: Sansung Xclipse 920 (Vul kan 1.1.179)

St orage: 106GB (85GB free)
Status: Cracked screen, repurposed as 24/7 server

2. Termux Setup

Installation

IMPORTANT: Install from F-Droid, NOT Google Play Store!
The Play Store version is outdated and broken.

- Install F-Droid: https://f-droid.org/
- Install Termux from F-Droid: https://f-droid.org/packages/com.termux/
- Install Termux:API (optional but useful): https://f-droid.org/packages/com.termux.api/

First Launch

Open Termux and run:

Updat e package lists
pkg update
Upgrade existing packages

pkg upgrade -y
Install essential tools
pkg install -y git curl wget nano openssh jq

Understanding pkg

pkg is Termux's package manager (wrapper around apt):

Search for packages

pkg search <name>

Install packages

pkg install <package>

Renove packages

pkg uninstall <package>
List installed packages
pkg list-installed

Show package info

pkg show <package>

Storage Setup

Grant Termux access to shared storage:
t er mux- set up- st or age
This creates symlinks in ~/storage/:

- ~/storage/shared Internal storage
- ~/storage/downloads Downloads folder
- ~/storage/dcim Camera photos

Keeping Termux Alive

Android aggressively kills background apps. Prevent this:

- Disable battery optimization for Termux:
- Settings Apps Termux Battery Unrestricted

- Acquire a wake lock (in Termux):
“bash

termux-wake-lock

- Consider running a foreground service:
“bash

Install termux-services

pkg install termux-services

Enable sshd to keep Termux active
sv-enable sshd

SSH Access (Recommended)

Set up SSH so you can manage remotely:

Install OpenSSH

pkg install openssh

Set a password

passwd

Start SSH server

sshd

Find your IP

i p addr show wl an0 | grep inet

SSH runs on port 8022 by default:

From anot her nachi ne
ssh -p 8022 user @phone-i p>

3. Shizuku Setup

What is Shizuku?

Shizuku is a clever app that:

- Runs an ADB shell process on your phone

- Lets other apps borrow those shell privileges

- Works WITHOUT root

This gives us access to the shell user (uid 2000), which has far more privileges than regular apps.

Installation

- Install Shizuku from Play Store or F-Droid:

- https://shizuku.rikka.app/

- Or: https://play.google.com/store/apps/details?id=moe.shizuku.privileged.api
- Open Shizuku app

Starting Shizuku (Wireless ADB Method)

This is the recommended method - survives reboots better than USB.

Step 1: Enable Developer Options

- Settings About Phone Software Information
- Tap "Build Number" 7 times

- Enter PIN if prompted

- "Developer mode enabled" appears

Step 2: Enable Wireless Debugging

- Settings Developer Options
- Find "Wireless debugging" and enable it
- Tap on "Wireless debugging" to enter its settings

Step 3: Pair with Shizuku

Option A: From the phone itself (easiest)

- In Wireless Debugging settings, tap "Pair device with pairing code"
- Note the pairing code and port (e.g., 123456 on port 37521)

- Open Shizuku app

- Tap "Start via Wireless debugging"

- Enter the pairing code when prompted

- Shizuku will connect and start

Option B: From a computer (if Option A fails)

On your conputer, with ADB installed

adb pair <phone-ip>:<pairing-port>

Enter pairing code when pronpted

Then connect

adb connect <phone-i p>: <debug- port>

Start Shizuku

adb shell sh /storage/enul at ed/ 0/ Andr oi d/ dat a/ moe. shi zuku. pri vil eged. api /start.sh

Step 4: Verify Shizuku is Running

In the Shizuku app, you should see:

- "Shizuku is running"
- Service version number
- Number of authorized apps

Auto-Start on Boot

Shizuku can auto-start if:

- Wireless debugging stays enabled
- You're on the same WiFi network
In Shizuku settings:

- Enable "Start automatically when wireless debugging is enabled"

Granting Termux Access

- Open Shizuku

- Look for Termux in the list of apps

- Tap to authorize

- If Termux doesn't appear, you need to install rish first (next section)

4. rish Integration

What is rish?

rish (Remote Interactive SHell) is a tool that lets you run commands with Shizuku's shell privileges from within
Termux.

Installing rish

Navigate to Termux bin

cd $PREFI X/ bi n

Downl oad rish and the DEX file

Method 1: From Shi zuku rel eases

curl -L -o rish "https://github.com ArcPart/rish/rel eases/ downl oad/v1.0.0/rish-termnmx"

curl -L -o rish_shizuku.dex "https://github.com ArcPart/rish/rel eases/ downl oad/v1.0.0/rish_shizuku. dex"
Make execut abl e

chnod +x rish

Alternative: Manual extraction from Shizuku APK

| f the above doesn't work, extract from Shizuku APK

pkg install unzip

Find Shizuku APK (path varies)

APK_PATH=$(pm pat h noe. shi zuku. privil eged. api 2>/dev/null | cut -d: -f2)
|f that doesn't work, try:

APK_PATH="/ dat a/ app/ ~~*/ noe. shi zuku. pri vi | eged. api */ base. apk"

Extract the DEX

unzip -p $APK_PATH cl asses. dex > $PREFI X/ bi n/ri sh_shi zuku. dex

The rish binary needs to be obtained separately or witten

Testing rish

Test basi c command

echo 'id | rish

Expected output:

ui d=2000(shel |') gi d=2000(shell) groups=..

If you see uid=2000(shell), it's working!

The rish-run Helper Script

Create a helper script that makes running binaries through Shizuku easy:

cat > $PREFI X/ bin/rish-run << ' EOF
#!/ dat a/ dat a/ com t er nux/ fi | es/ usr/ bi n/ bash

#
rish-run: Run comuands/binaries with full hardware access via Shi zuku
#
Usage:
rish-run ./binary # Run a binary
rish-run -c¢ "conmand" # Run a shell conmand
#
set -e
SHARED DI R="/dat a/l ocal /t np"
if ["$1" = "-c"]; then
Run a command directly
shift
echo "$*" | rish
exit $?

fi
if [-z "$1"]; then

echo "Usage: rish-run ./binary [args]"
echo " rish-run -c \"comand\""
exit 1

f

Bl NARY="$1"

shi ft

if [! -f "$BINARY"]; then
echo "Error: File not found: $BlI NARY"
exit 1

f

Get absolute path and fil enane

Bl NARY_PATH=$(r eal pat h " $BI NARY")

Bl NARY_NAME=$(basenane " $Bl NARY")

DEST="$SHARED DI R/ $BI NARY_NAME"

Copy to shared | ocation and execute

echo "cp \"$BI NARY_PATH\ " \"$DEST\" && chnmod 755 \"$DEST\" && \"$DEST\" $*" | rish

d eanup
echo "rm-f \"$DEST\"" | rish 2>/dev/null || true
ECF

chnod +x $PREFI X/ bin/rish-run

Usage Examples

Check all CPU cores are visible

rish-run -c "cat /proc/cpuinfo | grep processor we -1"
Qutput: 8 (instead of 3)

Check GPU access

rish-run -c "Is -la /dev/dri/"

Shoul d show render D128, renderD129, etc
Run a conpiled binary with full hardware
rish-run ./ny_benchmark

Conpile in Ternux, run via Shizuku

gcc -G8 -0 test test.c

rish-run ./test

What Shizuku Unlocks (Before/After)

Resource | Normal Termux | Via Shizuku

CPU Cores | 3|8

GPU Access | Blocked | Full

CPU Frequencies | Hidden | Visible

System Info | Limited | Full dumpsys

Package Management | Limited | Full pm commands

5. Database Stack

SQLite (Built-in, Simple)

SQLite is perfect for local data storage.

I nstal

pkg install sqglite

Createl/ open dat abase

sqlite3 nydata. db

Basi ¢ commands

sqgl i te> CREATE TABLE trades (id | NTEGER PRI MARY KEY, synmbol TEXT, price REAL, timestanp | NTEGER);
sqglite> | NSERT | NTO trades VALUES (1, 'BTC, 50000.0, 1640000000)

sqlite> SELECT * FROM trades
sqlite> .quit

Limitations: Single-writer, no network access, file-based.

Redis (In-Memory, Fast)

Redis is excellent for caching, real-time data, and pub/sub.

I nstal

pkg install redis

Start Redis server

redi s-server --daenpbni ze yes
Test connection

redis-cli ping

Qut put: PONG

Basi c usage

redis-cli SET nykey "hello"
redis-cli GET nykey

Redis Configuration (optional):

Create config file

nkdir -p ~/.config/redis

cat > ~/.config/redis/redis.conf << 'EOF
daenoni ze yes

port 6379

bind 127.0.0.1

maxmenory 512nb

maxmenory-policy allkeys-Iru

appendonl y yes

appendfi | ename "appendonly. aof"

dir /data/data/comternux/files/hone/.local/share/redis
ECF

Create data directory

nkdir -p ~/.local/share/redis

Start with config

redi s-server ~/.config/redis/redis.conf

PostgreSQL (via proot-distro)

PostgreSQL doesn't run natively in Termux, but works perfectly in a Linux container.

Installing proot-distro

Install proot-distro

pkg install proot-distro

List available distros

proot-distro |ist

Install Al pine Linux (lightweight, ~10MB)
proot-distro install alpine

Setting Up PostgreSQL in Alpine

Enter Al pine

proot-distro |ogin alpine

Inside Al pine: Install PostgreSQ
apk update

apk add postgresql postgresql-contrib
Initialize database

nkdir -p /var/lib/postgresql/data
nkdir -p /run/postgresq

chown - R postgres: postgres /var/lib/postgresqgl /run/postgresql
Initialize as postgres user

su postgres -c "initdb -D /var/lib/postgresql/data"

Start PostgreSQ

su postgres -c "pg_ctl -D /var/lib/postgresqgl/data start"
Create a database

su postgres -c "createdb trading"

Connect

su postgres -c "psqgl -d trading"

Exit Al pine

exit

Connecting from Termux

Run conmand in Al pi ne
proot-distro login alpine -- su postgres -c "psqgl -d trading -c ' SELECT version();""

Helper Script for PostgreSQL

cat > $PREFI X/ bi n/ pg << ' EOF'

#!'/ bi n/ bash

PostgreSQL hel per for proot-distro Al pine
ACTI ON="${ 1: -shel | }"

case "$ACTION' in

start)
proot-distro login alpine -- sh -c "
nkdir -p /run/postgresql
chown postgres: postgres /run/postgresql
su postgres -c 'pg_ctl -D /var/lib/postgresqgl/data start’
st op)
proot-distro login alpine -- su postgres -c "pg_ctl -D /var/lib/postgresql/data stop"
st at us)
proot-distro login alpine -- su postgres -c "pg_ctl -D /var/lib/postgresqgl/data status"
shel)
proot-distro login alpine -- su postgres -c "psqgl -d trading"
exec)
shi ft

proot-distro |login alpine -- su postgres -c "psql -d trading -c \"$*\""

)
echo "Usage: pg [start|stop|status|shell|exec <SQ>]"
esac
EOF
chrmod +x $PREFI X/ bi n/ pg

Usage:

pg start # Start PostgreSQL
pg stop # Stop PostgreSQL
pg shell # Interactive psql

pg exec "SELECT * FROM trades LIMT 5"

TimescaleDB (Time-Series Extension)

TimescaleDB is perfect for trading data, metrics, and time-series workloads.
Enter Al pine

proot-distro | ogin al pine

Add Ti nmescal eDB repository

echo "https://dl-cdn.al pi nel i nux. org/ al pi ne/ edge/ communi ty" >> /etc/apk/repositories
apk update

Install Timescal eDB

apk add tinescal edb

Enabl e the extension

su postgres -c "psqgl -d trading -c ' CREATE EXTENSI ON | F NOT EXI STS ti nescal edb; ' "
Create a hypertable for trades

su postgres -c "psqgl -d trading" << 'ECOF

CREATE TABLE | F NOT EXI STS trades (

time TI MESTAMPTZ NOT NULL,
synbol TEXT NOT NULL,

price DOUBLE PRECI SI ON,

vol une DOUBLE PRECI SI ON,

si de TEXT

)
SELECT create_hypertable('trades', '"tinme', if_not_exists => TRUE);
-- Create indexes
CREATE | NDEX | F NOT EXI STS i dx_trades_synbol time ON trades (synbol, tinme DESC);
-- Enabl e conpression (optional, saves space)
ALTER TABLE trades SET (
ti mescal edb. conpr ess,
tinescal edb. conpress_segnentby = ' synbol "’
)
ECF
exit

Example Queries:

-- Insert trade
I NSERT | NTO trades VALUES (NON), 'BTC/USD , 50000.0, 1.5, 'buy');
-- Get OHLCV candl es
SELECT
time_bucket('1 minute', tine) AS bucket,
synbol ,
first(price, time) AS open,
max(price) AS high,
m n(price) AS |ow,
last(price, tinme) AS close,
sun(vol une) AS vol une
FROM trades
WHERE synbol = ' BTC/ USD
AND tinme > NON) - INTERVAL '1 hour'
GROUP BY bucket, synbol
ORDER BY bucket ;

6. GPU Compute

Understanding Android GPU Access

On Android:

- GPU hardware exists at /dev/dri/renderD128, /dev/dri/renderD129
- Regular apps (including Termux) are blocked by SELinux
- The shell user (via Shizuku) CAN access GPU

Checking GPU Access

Wthout Shizuku (will fail)
Is -la /dev/dri/
Perm ssion deni ed

Wth Shizuku (works!)

rish-run -c "ls -la /dev/dri/"

crwrw--- 1 systemgraphics ... renderD128
crwrw--- 1 systemgraphics ... renderD129

Vulkan Compute (Recommended)

Vulkan is the fastest option for GPU compute on Android.

Install Vulkan tools in Ternux

pkg install vul kan-tool s vul kan- headers shaderc

Check Vul kan info (via Shizuku)

rish-run -c "vul kani nfo --summary 2>/dev/null | head -30"

Sample Vulkan Compute Program:

/] save as: gpu_conpute.c
/1 M nimal WVul kan conpute exanpl e
#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <string. h>
#i ncl ude <dl fcn. h>
/1 Vul kan types (mninmal)
typedef uint32_t VKFI ags;
typedef uint32_t VkBool 32;
typedef uint64_t VkDeviceSi ze;
typedef struct VKInstance_T* VKInstance;
typedef struct VkPhysical Devi ce_T* VkPhysi cal Devi ce;
typedef struct VkDevice_T* VkDevi ce;
/1 ... (full inplenmentation would be | onger)
int main() {
printf("Vul kan GPU Conpute Test\n");

/'l Load Vulkan library

voi d* vul kan = dl open("!i bvul kan. so", RTLD_NOW ;

if (!vulkan) {
printf("Failed to |oad Vul kan: %\n", dlerror());
return 1;

printf("Vulkan |library |oaded successfully!\n");

/1 In a real inplenmentation, you woul d:

/1 1. Create VKlnstance

/1 2. Sel ect VkPhysical Device

/1l 3. Create VkDevice with conmpute queue
/1l 4. Create shader nodule from SPIR-V
/1 5. Create conpute pipeline

/1 6. Allocate buffers

/1l 7. Record and submt command buffer
/1 8. Read results

dl cl ose(vul kan);
return O;

}

Conpil e

clang -3 -0 gpu_conpute gpu_conpute.c -1dl
Run via Shizuku (for GPU access)
rish-run ./gpu_conpute

OpenCL (Native Samsung/AMD)

Samsung phones with AMD GPUs (like S22 Ultra) have native OpenCL:
Check for OpenCL library

rish-run -c "Is -la /vendor/|ib64/*CpenCL* 2>/dev/null"
/vendor/|ib64/1ibSGUpenCL. so
The GPU reports as AMD gf x1040 (RDNA2 architecture)

OpenCL Kernel Example:

/'l opencl _kernel . cl
__kernel void vector_add(__gl obal const float* a
__global const float* b
__global float* result) {
int i = get_global _id(0)
result[i] = a[i] + b[i];

ML Inference (NNAPI)

Android's Neural Networks API can use GPU/NPU:

Usi ng ONNX Runtime with NNAP
i mport onnxruntime as ort
Create session with NNAPI provider (uses GPU NPU)
session = ort. | nferenceSession(
"nodel . onnx",
provi ders=[' Nnapi Executi onProvi der', ' CPUExecuti onProvider']
)
Run inference
result = session.run(None, {"input": input_data})

GPU Benchmark Results (S22 Ultra)

Test | Result

Vulkan compute (1M float adds) | 1.33 ms
OpenCL compute (1M float adds) | 3.95 ms
Memory bandwidth | 5.2 GB/s

7. Python/Node Stack

Python Setup

Install Python

pkg install python python-pip

Upgrade pip

pip install --upgrade pip

Install comon packages

pip install nunpy requests aiohttp

For data science (may take a while)
pip install pandas scipy matplotlib

NumPy Verification:

python3 -c¢ "

i mport nunpy as np

print(f' NunPy version: {np.__version__}")

Qui ck benchmark

import time

a = np.random r and(1000000)

b = np. random r and(1000000)

start = tine.tine()

c=a+b

print(f'1M float adds: {(tinme.time()-start)*1000:.2f}ns")

Async PostgreSQL with Python

Install asyncpg (works in Al pine via proot)
proot-distro login alpine -- sh -c "

apk add python3 py3-pip

pip install asyncpg

async_db. py - Run inside Al pine
i mport asynci o
i mport asyncpg
async def main():
conn = await asyncpg. connect (
user =' postgres',
dat abase='tradi ng'
host='/run/ postgresqgl' # Unix socket

result = await conn.fetch(' SELECT * FROMtrades LIMT 5')
for rowin result

print (row)

await conn. cl ose()
asynci o. run(main())

Node.js Setup

Install Node.js

pkg install nodejs-Its

O latest version

pkg install nodejs

Verify

node --version

npm - -version

Initialize a project

mkdir ~/ myproject & & cd ~/ nmyproject
npminit -y

Install packages
npminstall express redis pg

Example Express Server:

/] server.js
const express = require(' express')
const app = express()
app.get('/', (req, res) =>{
res.json({
status: 'running'
pl atform ' Androi d/ Ter mux’
timestanp: new Date().tol SOString()
b))
b))
app.listen(3000, '0.0.0.0", () =>{
consol e. | og(' Server running on http://0.0.0.0:3000");
b))

Run

node server.js

Test from anot her device
curl http://<phone-ip>: 3000/

Development Workflow

Install devel opment tools
pkg install git vimtnmux

tmux for persistent sessions
tnmux new -s dev

Split panes for

- Code editing

- Running server

- Logs/testing
#
#

H

Detach: Crl+B, D
Reattach: tnmux attach -t dev

8. Bloatware Management

Why Disable Bloatware?

Preinstalled apps consume RAM even when "not running":

- Background services

- Receivers listening for broadcasts

- Cached processes

On our S22 Ultra, disabling ~100 packages freed significant RAM now at 3.4GB available (from 7.1GB total).

Listing Installed Packages

List all packages

rish-run -c "pmlist packages" | wc -
List third-party packages

rish-run -c "pmlist packages -3"

Li st system packages

rish-run -c "pmlist packages -s"

Li st disabled packages

rish-run -c "pmlist packages -d"

Safe Packages to Disable

WARNING: Disabling wrong packages can soft-brick your phone!
Generally Safe to Disable:

Facebook

echo ' pm di sabl e-user --user 0 com facebook. katana' | rish

echo ' pm di sabl e-user --user 0 com facebook. appmanager' | rish

echo ' pm di sabl e-user --user 0 com facebook. services' | rish

M crosoft

echo ' pm di sabl e-user --user 0 comm crosoft.skydrive' | rish

echo ' pm di sabl e-user --user 0 comm crosoft.office.outlook' | rish

Googl e (be careful!)

echo ' pm di sabl e-user --user 0 com googl e. androi d. apps. magazi nes' | rish

echo ' pm di sabl e-user --user 0 com googl e. androi d. apps. tachyon' | rish # Duo
echo ' pm di sabl e-user --user O com googl e. androi d. vi deos' | rish

echo ' pm di sabl e-user --user 0 com googl e. android. nusic' | rish

Samsung

echo ' pm di sabl e-user --user 0 com sansung. androi d. game. ganehone' | rish

echo ' pm di sabl e-user --user O com sanmsung. andr oi d. game. ganetool s' | rish
echo ' pm di sabl e-user --user 0 com sansung. android. app.tips' | rish

echo ' pm di sabl e-user --user 0 com sansung.android.voc' | rish # Sansung Menbers
echo ' pm di sabl e-user --user 0 com sansung. androi d. mobi | eservice' | rish

Disable Script

cat > $PREFI X/ bi n/ di sabl e-bl oat << ' EOF

#! / bi n/ bash
Di sabl e cormon bl oat war e packages
PACKAGES=(
=== GOOCGLE (aggressive - keep GM5 if you need Play Store) ===

"com googl e. andr oi d. gns
"com googl e. androi d. gns. | ocati on. hi story"

"com googl e. andr oi d. gns. supervi si on"

"com googl e. andr oi d. vendi ng" # Play Store
"com googl e. andr oi d. apps. maps"

"com googl e. andr oi d. apps. nessagi ng"

Play Services - big RAM hog

"com googl e. andr oi d. apps. t achyon" # Duo/ Meet

"com googl e. andr oi d. apps. t ur bo" # Device Health

"com googl e. androi d. gnt # Gmai

"com googl e. andr oi d. yout ube"

"com googl e. andr oi d. googl equi cksear chbox" # CGoogl e Search/ Assi st ant
"com googl e. androi d. i nput et hod. | ati n" # Gboard

"com googl e. androi d. tts"

"com googl e. androi d. as"

"com googl e. andr oi d. as. 0ss"

"com googl e. androi d. i ns"

"com googl e. andr oi d. f eedback"

"com googl e. andr oi d. docunent sui '

"com googl e. andr oi d. ext . servi ces"

"com googl e. androi d. pri nt servi ce. reconmendat i on"

"com googl e. andr oi d. proj ecti on. gear head" # Android Auto
"com googl e. androi d. syncadapt er s. cal endar "

"com googl e. ar. core"

"com googl e. audi 0. heari ng. vi sual i zati on. accessi bility.scribe"
"com googl e. andr oi d. apps. accessi bility. voi ceaccess"
"com googl e. andr oi d. adservi ces. api "

"com googl e. andr oi d. f eder at edconput e"

"com googl e. andr oi d. ondevi ceper sonal i zati on. servi ces"
"com googl e. mai nl i ne. adservi ces"

"com googl e. mai nline.tel emetry"

=== FACEBOK ===

"com f acebook. appmanager "

"com f acebook. servi ces"

=== M CROSCFT ===

"com m crosoft.skydrive"

"com m crosof t. appmanager”

=== SAMSUNG BLOAT ===

"com sanmsung. andr oi d. nobi | eservi ce"

"com sansung. andr oi d. bi xby. agent "

com sansung. andr oi d. app. setti ngs. bi xby"

com sansung. andr oi d. vi si oni ntel | i gence"

com sansung. andr oi d. ar zone"

"com sansung. andr oi d. app. spage" # Samsung Free
com sansung. andr oi d. app. not es"

com sansung. andr oi d. app. cont act s"

com sansung. andr oi d. app. rout i nes"

"com sansung. andr oi d. app. sharel i ve"

com sansung. andr oi d. app. gal axyfi nder"

com sansung. andr oi d. app. t el ephonyui "

com sansung. andr oi d. app. aodser vi ce"

"com sansung. andr oi d. gane. gos" # Game Optim zer
"com sansung. andr oi d. nessagi ng"
"com sanmsung. andr oi d. honeyboar d" # Samsung Keyboard

com sansung. andr oi d. t hemest or e"
"com sanmsung. androi d. sti ckercenter"

"com sansung. androi d. forest" # Digital Wellbeing
"com sansung. androi d. | ool " # Samsung Menbers
"com sanmsung. andr oi d. scl oud" # Samsung C oud

"com sanmsung. andr oi d. sansungpass"

com sansung. androi d. snartcal | provi der"

com sansung. androi d. snartface"

"com sansung. andr oi d. snart suggesti ons"

com sansung. andr oi d. r ubi n. app"

com sansung. andr oi d. mdx"

com sansung. andr oi d. ncf ds"

"com sansung. andr oi d. da. daagent"

com sansung. andr oi d. dsns"

com sansung. andr oi d. bbc. bbcagent "

com sansung. andr oi d. beaconmanager "

"com sansung. andr oi d. cnf a. f r anewor k"

"com sansung. andr oi d. car key"

com sansung. andr oi d. dkey"

com sansung. andr oi d. uwb"

"com sansung. andr oi d. caner axservi ce"

"com sansung. andr oi d. peri pheral . franewor k"
com sansung. andr oi d. scpni’

com sansung. andr oi d. scs"

"com sansung. androi d. server. wi fi. nobil ew ps"
"com sansung. andr oi d. servi ce. ai r conmand"

com sansung. andr oi d. servi ce. ai rvi ewdi cti onary"
com sansung. andr oi d. servi ce. pentastic"

"com sansung. andr oi d. short cut backupservi ce"
"com sansung. SMI"

com sansung. accessi bility"

com sansung. andr oi d. accessi bility.tal kback"
com sansung. f aceservi ce"

"com sansung. i pservi ce"

com sansung. oda. servi ce"

com sansung. sec. andr oi d. teegri s. tui _service"
com sansung. cnf a. Aut hTouch"

=== SYSTEM (careful!) ===

"com andr oi d. bl uet oot h" # Only if not using BT

"com androi d. chr one"

"com andr oi d. nfc" # Only if not using NFC

"com andr oi d. phone" # Only if pure server (no calls!)
"com androi d. settings.intelligence"

"com osp. app. si gni n" # Samsung Account

"com sec. andr oi d. app. | auncher™" # Sanmsung Hone (use AGCSP)

"com sec. andr oi d. app. chr omecust om zat i ons"

com sec. andr oi d. daenonapp"

com sec. andr oi d. deskt opnode. ui servi ce" # DeX
com sec. andr oi d. di agnonagent "

"com sec. androi d. sdhns"

com sec. bcservi ce"

com sec. i neservice"

com sec. | ocati on. nsfl p2"

"com sec. phone"

"com sec. sve
com sec. uni fi edwfc"
"com wssyncmi dni

)
for pkg in "${PACKAGES[@}"; do
echo "Disabling: $pkg"
echo "pm di sabl e-user --user 0 $pkg" | rish 2>/dev/nul
done
echo "Done! Disabl ed ${#PACKAGES[@} packages"
echo "Reboot recomended"
ECF
chnod +x $PREFI X/ bi n/ di sabl e- bl oat

Re-enabling Packages

If something breaks:

Re-enabl e a specific package

echo ' pm enabl e com package. nane' | rish

Re-enabl e ALL di sabl ed packages

for pkg in $(pmlist packages -d | cut -d: -f2); do
echo "pm enabl e $pkg" | rish

done

Checking Memory After Cleanup

Before/after conparison

cat /proc/nmem nfo | grep -E "Menilotal | MemAvai | abl e"
O via Ternux AP

t er nux- battery-status

9. Clawdbot Integration (Optional)

What is Clawdbot?

Clawdbot is an Al agent platform that runs Claude (Anthropic's Al) locally with:

- Tool use (file system, web, shell commands)
- Memory and context management
- Discord/messaging integration

Prerequisites

- Node.js 18+
- npm
- Anthropic API key

Installation

Install C awdbot globally

npminstall -g clawdbot

Set up APl key

export ANTHROPI C_API _KEY="your - key- her e"

Add to shell profile

echo 'export ANTHROPI C_API _KEY="your-key-here"' >> ~/.bashrc

Termux-Specific Patches

Clawdbot may have hardcoded paths that don't work in Termux:

Check for hardcoded paths

grep -rn "' /tnp\|'/home\|\"/tnp\|\"/home" $PREFI X/|ib/node_nodul es/ cl awdbot / di st/
Patch /tnp Ternmux tenp

Patch /hone /datal/data/comternux/files/hone

Running Clawdbot

Start interactively

cl awdbot

O with specific config

cl awdbot --config ~/.config/clawdbot/config.yan

Sharp (Image Processing)

Clawdbot uses sharp for images. The native build may fail:

|f pative build OOvs, use WASM f al | back
cd $PREFI X/ |'i b/ node_nodul es/ cl awdbot
npminstall sharp --build-fromsource=fal se

Discord Integration

Set up Discord bot token
export DI SCORD_BOT_TOKEN="your -t oken"
Configure channels in O awdbot config

10. Troubleshooting

Shizuku Won't Start

Problem: Shizuku shows "not running"
Solutions:

- Check wireless debugging is enabled
- Re-pair the device:
“bash

On computer

adb pair <ip>:<port>

adb connect <ip>:<port>

adb shell sh /storage/emulated/0/Android/data/moe.shizuku.privileged.api/start.sh

- Check if another ADB session is blocking:
“bash

adb devices # Should show your device

rish: Permission Denied

Problem: rish commands fail with permission errors
Solutions:

- Ensure Shizuku is running (check Shizuku app)
- Authorize Termux in Shizuku

- Check the DEX file exists:

“bash

Is -la $PREFIX/bin/rish_shizuku.dex

PostgreSQL Won't Start

Problem: pg_ctl fails in Alpine
Solutions:

Check if already running

proot-distro login alpine -- su postgres -c "pg_ctl status -D /var/lib/postgresql/data"
Check data directory permissions

proot-distro login alpine -- |Is -la /var/lib/postgresql/

Reinitialize if corrupted

proot-distro login alpine -- sh -¢c "

rm-rf /var/lib/postgresql/datal*
su postgres -c 'initdb -D /var/lib/postgresql/data’

Termux Keeps Getting Killed

Problem: Android kills Termux after a few minutes
Solutions:

- Disable battery optimization

- Acquire wake lock: termux-wake-lock

- Run a foreground notification service

- Disable "Adaptive battery"

- On Samsung: Disable "Put unused apps to sleep" in Device Care

Out of Memory (OOM) During Compilation

Problem: Compiling large packages fails with OOM
Solutions:

- Disable more bloatware to free RAM

- Add swap (if rooted)

- Compile on another machine and copy binary
- Use pre-built packages when available

GPU Access Still Blocked

Problem: Even with Shizuku, GPU commands fail
Solutions:

- Verify shell SELinux context:
“bash

rish-run -c "cat /proc/self/attr/current"
Should show: u:r:shell:sO

- Check device permissions:
“bash

rish-run -c "Is -la /dev/dri/"

- Some devices may need additional vendor-specific workarounds

Networking Issues

Problem: Can't connect to services from other devices
Solutions:

- Check phone IP: ip addr show wlan0
- Verify service is binding to 0.0.0.0 (not just localhost)
- Check Android firewall settings

- Some routers block device-to-device traffic

Quick Reference Card

Shi zuku commands
echo 'id" | rish # Test Shizuku

rish-run ./binary # Run binary with full hardware
rish-run -c "comrand" # Run conmand vi a Shi zuku

Dat abase

redi s-server --daenobni ze yes # Start Redis

pg start # Start PostgreSQL (hel per)

pg shell # PostgreSQL shel |

Systeminfo

rish-run -c "cat /proc/cpuinfo | grep processor | w -1" # CPU cores
rish-run -c "cat /proc/neminfo | grep MenmAvail abl e" # Free RAM
rish-run -c "l's /dev/dri/" # GPU devi ces

Bl oat ware

rish-run -c "pmlist packages -d" # List disabled

echo ' pmdi sabl e-user --user 0 com package' | rish # Disable

echo ' pm enabl e com package' | rish # Re-enabl e

Ter mux

t er mux- wake- | ock # Prevent sleep

t er mux- set up- st or age # Enabl e storage access

sshd # Start SSH server (port 8022)

Appendix: Our S22 Ultra Performance

Metric | Value

CPU cores (via Shizuku) | 8

Available RAM (after optimization) | 3.8 GB

Vulkan compute (1M adds) | 1.33 ms

OpenCL compute (1M adds) | 3.95 ms

AES-256-CBC | 491 MB/s

Disk write (synced) | 123 MB/s

Disk read | 2.3 GB/s

API latency (Anthropic) | ~117ms connect, ~477ms total

Guide last updated: January 2026
Based on real-world experience with Samsung Galaxy S22 Ultra running Android 12

